10th Annual Workshop on Environment and Alternative Energy Christyl C. Johnson GSFC Deputy Director for Science and Technology Dennis J. Andrucyk Director of Engineering ## Our Nation's History with Propellants # Toxic Propellant Risks/Danger # Toxic Propellant Risks/Danger Columbia Accident February 1, 2003 # "Green" Propellants Needed #### NASA Options Study Cost Analysis #### Cost Methodologies | Cost Element | Method | |--|--| | CEV SM DDT&E & Production -Propulsion Subsystem -All Other Subsystems | Component Cost Model ARCOM | | LSAM DDT&E & Production -Ascent Stage Propulsion Subsystem -All Other Subsystems | Component Cost Model NAFCOM | | EDS DDT&E & Production | NAFCOM | | Ground Processing | KSC Bottoms-up Assessment | | Technology Development | Combination of Existing Contracts, Past Estimates, and Expert Option | Costs Compiled and Phased Using the SAIC Life Cycle Cost Integration Model #### **Propellant Options** - Option 1: Constellation Baseline (Hypergols) - Option 2: Lox/Methane on CEV SM and LSAM Ascent Stage - Option 2a: Baseline Lox/Methane - Option 2b: Lox/Methane and Hypergol Dual Development Program through PDR, Drop Hypergols at PDR - Option 2b+: Block Upgrade CEV SM to Lox/Methane for Lunar Missions, Use Lox/Methane for LSAM Ascent Stage - Option 3: Lox/LH2 on CEV SM and LSAM Ascent Stage - Option 3a: Baseline Lox/LH2 - Option 3b: Lox/LH2 and Hypergol Dual Development Program through PDR, Drop Hypergols at PDR - Option 3b+: Block Upgrade CEV SM to Lox/LH2 for Lunar Missions, Use Lox/LH2 for LSAM Ascent Stage - Option 4: Mixed Hypergolic and Alternative Propellants - Option 4a: Hypergolic SM, and LSAM RCS; Lox/LH2 LSAM Ascent Stage Main Engine - Option 4b: Hypergolic Integrated SM and LOX/Methane Integrated LSAM Ascent Stage Main Engine #### **Decision:** Risk too great and return on investment not sufficient to support a commitment to wholesale investment in "green" technologies for propellant systems now ### Life Cycle Analysis # Toxic Propellant Risks/Danger #### **Worker Exposure/ Occupational Safety Concerns** ### Case Study: Transportation Incidents #### **Hazardous Materials Transportation Incidents Happen Frequently** #### All Incidents by Mode and Incident Year Incident Occurred Year Source: U.S. Department of Transportation Hazmat Intelligence Portal, retrieved November 2011 ### Case Study: Transportation Incidents #### **Financial Costs of Hazardous Materials Transportation Incidents** #### **Incidents By Mode and Incident Year** | Mode Of | | | | | | | | | | | | |----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------| | Transportation | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Grand Total | | FAA-AIR | 1,083 | 732 | 750 | 993 | 1,654 | 2,406 | 1,556 | 1,278 | 1,356 | 1,293 | 13,101 | | FMCSA-HIGHWAY | 15,804 | 13,502 | 13,594 | 13,068 | 13,461 | 17,162 | 16,930 | 14,804 | 12,730 | 12,645 | 143,700 | | FRA-RAILWAY | 899 | 870 | 802 | 765 | 745 | 703 | 753 | 749 | 643 | 751 | 7,680 | | USCG-WATER | 6 | 10 | 10 | 17 | 69 | 68 | 61 | 99 | 90 | 105 | 535 | | Grand Total | 17,792 | 15,114 | 15,156 | 14,843 | 15,929 | 20,339 | 19,300 | 16,930 | 14,819 | 14,794 | 165,016 | #### **Damages By Mode and Incident Year** | Mode Of | | | | | | | | | | | | |----------------|---------|---------|---------|---------|---------|---------|----------|-----------|-----------|-----------|---------------| | Transportation | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Grand Total | | FAA-AIR | \$309K | \$109K | \$100K | \$188K | \$198K | \$671K | \$88K | \$191K | \$708K | \$20K | \$2,583,290 | | FMCSA-HIGHWAY | \$47.7M | \$48.1M | \$49.1M | \$47.2M | \$40.2M | \$59.5M | \$47.3M | \$42.8M | \$50.6M | \$63.8M | \$496,233,940 | | FRA-RAILWAY | \$21.2M | \$9.75M | \$4.13M | \$13.9M | \$15.5M | \$10.7M | \$27.3M | \$8.03M | \$17.5M | \$7.36M | \$135,466,997 | | USCG-WATER | \$147K | \$248K2 | \$261K | \$1.65M | \$114K | \$58.8K | \$19,097 | \$138,350 | \$100,887 | \$574,103 | \$3,316,416 | | Grand Total | \$69.4M | \$58.2M | \$53.6M | \$62.9M | \$55.9M | \$71.0M | \$74.7M | \$51.2M | \$69.0M | \$71.7M | \$637,600,643 | Source: U.S. Department of Transportation Hazmat Intelligence Portal, retrieved November 2011 Railway Avg: \$17638 per incident. Water Avg: \$6199 per incident. Highway Avg: \$3453 per incident. Air Avg: \$197 per incident ### Case Study: Transportation Incidents #### **Human Costs of Hazardous Materials Transportation Incidents** Injuries By Mode and Incident Year (people transporting or responding to incidents) | Mode Of | | | | | | | | | | | Grand | |----------------|------|------|------|------|------|------|------|------|------|------|-------| | Transportation | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Total | | FAA-AIR | 13 | 4 | 1 | 11 | 44 | 2 | 8 | 7 | 10 | 2 | 102 | | FMCSA-HIGHWAY | 109 | 118 | 105 | 155 | 178 | 192 | 160 | 153 | 153 | 153 | 1,476 | | FRA-RAILWAY | 46 | 14 | 13 | 122 | 693 | 25 | 57 | 63 | 38 | 13 | 1,084 | | USCG-WATER | 0 | 0 | 0 | 0 | 0 | 15 | 3 | 0 | 0 | 2 | 20 | | Grand Total | 168 | 136 | 119 | 288 | 915 | 234 | 228 | 223 | 201 | 170 | 2,682 | #### **Fatalities By Mode and Incident Year** | Mode Of | | | | | | | | | | | Grand | |----------------|------|------|------|------|------|------|------|------|------|------|-------| | Transportation | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Total | | FAA-AIR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | FMCSA-HIGHWAY | 9 | 9 | 15 | 11 | 24 | 6 | 9 | 6 | 11 | 8 | 108 | | FRA-RAILWAY | 3 | 1 | 0 | 3 | 10 | 0 | 0 | 1 | 1 | 0 | 19 | | USCG-WATER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | | Grand Total | 12 | 10 | 15 | 14 | 34 | 6 | 9 | 10 | 12 | 8 | 130 | Source: U.S. Department of Transportation Hazmat Intelligence Portal, retrieved November 2011 #### Railway Avg: 1 injury every 7.1 incidents and 1 fatality every 404 incidents Water Avg: 1 injury every 27 incidents/1 fatality every 178 incidents. Highway Avg: 1 injury every 97 incidents/1 fatality every 1330 incidents. Air Avg: 1 injury every 128 incidents/0 fatalities every 13100 Incidents. ### Case Study: SeaCliff Derailment ### July 28, 1991 Rail Incident Train traveling on Southern Pacific line in Ventura County, CA derailed beneath Highway 101. A sulphuric acid spill due to a train derailment - A car carried eighty 55 gallon containers of aqueous hydrazine. - 23 of the hydrazine drums (1265 gallons) ruptured or leaked. - Ventura County Fire/Environmental Health Departments responded. - Highway 101 was closed for 6 days. - Over 300 residents of Seacliff Beach Colony located 100 feet away from the derailment were evacuated from their homes. - Rail worker was sickened after inhaling fumes. - Response was stalled by confusion manifest met requirements but did not list chemical names, quantity, or container type. - 49 homes were evacuated for nearly a full week. ### Case Study: SeaCliff Derailment ## Final Cost: **\$750,000+ (at least)** - \$435,167 to Ventura County Fire Department - \$200,000 split among Ventura/Oxnard Fire Depts & County Health Department - Remainder to California EPA and other agencies - Legal Costs Unknown: 22 settlements to Seacliff residents - 338 other claims rejected, most related to inconvenienced drivers. - A railway worker has also sued in relation to the incident. - A derailment nearby involving the same company during the same two week period caused toxic chemicals to spill into the Sacramento river – the total resulting cost (including legal) was over \$44 Million. (pesticides – killed most wildlife within the vicinity) ### **Environmental Life Cycle Costs** Must be factored into the Life Cycle Cost Analysis...... How do we determine which environmental parameters to include for future NASA decisions? # SITE VISITS – NASA (Kennedy /Wallops) NASA's Wallops Flight Facility NASA's Kennedy Space Flight Center ### Ammonium Dinitramide (ADN) - Solid white salt - No chlorine content - High performance - Readily soluble in water Invented in 1997 by the Swedish Space Corporation (SSC) and the Swedish Defence Research Agency (FOI). ADN Methanol Ammonia Water LMP-103S Storable Monopropellant **ADN** Fuel + Stabilizer Solvent + N(NO₂)₂-**Exhaust species** H₂ CO, CO N₂ $NH_4 \cdot N(NO_2)_2$ ### SITE VISITS - Sweden ### **Environmental Cost Elements** | X | 0 | 1- | | |------|---|----|---| | | |) | | | / 1/ | | | 1 | | ENVIRONMENTAL UNACCOUNTED
FOR COST ELEMENTS | HYDRAZINE | HPGP | |--|------------------------|-------------------| | MANUFACTURING AND STORAGE | | | | A. General Safety Considerations: | | | | Safety training for all site | 40 hours minimum | 1 hour per | | personnel | (\$375/person + | facility/building | | | \$70/person annually | | | | for mandatory | | | | refresher) | | | 2. Medical monitoring | Annual | N/A | | | Comprehensive | (non-hazardous | | | Medical Exam | operation) | | Hand-held communication | Walkie Talkies | N/A | | devices for emergency and | (~\$60/pair) Satellite | (non-hazardous | | auxiliary use | Phones (~\$1100 ea.) | operation) | | B. Site Control and Access: | | | |---|------------------------|---------------------| | Entrance to facility controlled | 24 hours/day | N/A | | by guard station | (\$300K/yr or up to | (non-hazardous | | | \$3M to build new one) | operation) | | Exclusion zone (no one allowed | Additional square | N/A | | inside w/o specific need and | footage, access | (non-hazardous | | training/certification) | control, and | operation) | | - | decontamination | | | | requirements (not | | | | quantified) | | | 3. Contamination reduction zone | Additional square | N/A | | | footage and | (non-hazardous | | | decontamination | operation) | | | requirements (not | | | | quantified) | | | | 1 | | | C. Air Monitoring: | | | | Permanent air monitoring | Inside and around | Not required | | stations installed | manufacturing | | | | facilities | | | 2. Station monitoring | 24 hours/day | Ammonia sensors are | | | | adequate (unmanned) | | Calibration and maintenance of | Calibration performed | Regular intervals | | monitoring equipment | at the beginning of | | | | each work day | | | Personal dosimeter badges | | Not required | | D. Perso | nal Protective Equips | nent (PPE) | | | |----------|--|----------------|------------------------------------|-------------------------------------| | | ople in the storage ta | | | | | 1. | If no leaks have occ | | SCAPE suit required | | | • | Work coveralls |) | | Required | | • | Steel-toed boots | or use | | Not required | | • | Surgical glove | SCAPE Suit | | Required | | • | Hard hat | J | | Not required | | • | Visor or Safety Gla | sses | | Required | | | | | | | | 2. | If there is an uncont | | SCAPE suit required | Gas mask required in | | | exposure to the haz | ardous | | case of major leak | | | material - | | | | | • | 1) ven suits | | | | | • | Steel-toed boots | | | | | • | Overboots | or use | | | | • | Inner and outer glov | | | | | • | Hard hat | SCAPE | | | | • | Respiratory protecti | on J Suit | | | | | tamination Procedur | | | | | 1. | Each individual mu | | | N/A | | | decontaminated bef | ore leaving | | (non-hazardous | | | the exclusion zone | | | operation) | | • | Wash the outer PPE
gross contamination | | SCAPE suit
cleaning or disposal | N/A
(non-hazardous
operation) | | • | Removal and dispos | al of the PPE | | Discard gloves only | | | Shower prior to ent
other part of the fac | | | Not required | | • | Washtubs, brushes,
citric acid must be
decontamination | water, and | | Not required | | • | Wash water must b
and treated before o | | | N/A
(non-hazardous
operation) | | • | Used PPE's must be
numbered and labe
be stored onsite (no
PPEs) | led barrels to | | N/A
(non-hazardous
operation) | ### **Environmental Cost Elements** | | 0 | 1 | | |-----|---|---|--| | | |) | | | 1 1 | | | | | - | | | |--|------------------------|------------------------| | F. Storage | | | | Special storage containers for | DOT-4BW | Opaque plastic | | hazardous materials | | container acceptable | | 2. Special temperature control | Store at temps below | Long-term storage: | | capability | 51 C (123 F). | 10-50°C (50-122°F) | | | | Short-term storage: - | | | | 5-70°C (41-156°F) | | 3. Special pressurized containers | Can be packaged only | Plastic container with | | | in Teflon high density | latching lid | | | polyethylene or | acceptable (not | | | stainless steel | compatible with | | | containing less than | aluminum tanks) | | | 0.5% molybdenum. | · · | | | Must use nitrogen | | | | blanket. | | | SHIPPING/TRANSPORTATION | | | | A. Rail: | | | | Special transporter | FORBIDDEN | Yes | | training/certification | | | | 2. Special storage/shipping drums | N/A | UN 1.4S | | | | | | B. Sea Vessels (Ship): | | | | Special transporter | Yes | Yes | | training/certification | | | | 2. Special storage/shipping drums | DOT-4BW | UN 1.4S | | | | | | C. Air: | Commercial | Allowed on | | | Passenger | commercial | | | FORBIDDEN | passenger aircraft | | Special transporter | N/A | Yes | | training/certification | | | | 2. Special storage/shipping drums | N/A | UN 1.4S | | | | | | D. Public Highways: | | | | Hazmat Cargo tank trailers | Yes | No | | Special drivers' certification | Yes | Yes | | Transporter liability insurance | Yes | Yes | | 4. Special storage/shipping drums for | DOT-4BW | UN 1.4S | | smaller quantities | DOITE | 011 1.40 | | Jananer quantities | + | | | | + | | | <u></u> | 1 | ļ | | FACILITY OPERATIONS & | | | |---|---------------------|----------------| | MAINTENANCE | | | | Construction (to meet safety | Required | Required | | specifications) | required | Required | | Air scrubbers (installation & operation) | Required | Not required | | Spill handling & disposal (catchment | Required | Required | | tanks) | | | | 4. Annual facility certifications & | Required | Required | | inspections | | | | Mandatory safety personnel (fire, | Required | N/A | | medical, etc.) | | (non-hazardous | | | | operation) | | 6. A minimum of 2 people must be present | Required | Not required | | during all hydrazine facility operations (2 | | | | additional people must be in SCAPE suits | | | | on standby during hazardous fueling | | | | operations) | | | | 7. Fueling Operations: | | | | a. Safety requirements | | | | Range safety personnel support | Required | Required | | Medical personnel | Required | N/A | | | | (non-hazardous | | | | operation) | | Fire personnel | Required | N/A | | | | (non-hazardous | | | | operation) | | b. "Down time" of all launch campaign | Required | N/A | | personnel not involved in hazardous | | (non-hazardous | | fueling operations | | operation) | | Ground support equipment | | | | refurbishment and preparation | | | | Fueling cart decontamination | Req'd/Comprehensive | Limited | | Drum decontamination | Req'd/Comprehensive | Limited | | Replacement of facility spill | Req'd/Comprehensive | Limited | | catchment tanks (if necessary) | | | ### **Environmental Cost Elements** | END OF LIFE DISPOSAL | | | |---|---------------------|--| | A. Propellant End of Use: | | | | Disposal of contaminated objects Disposal of residual propellant/waste | See pages 71-73 | Flush with water
(wastewater treated
as non-toxic waste)
Controlled burn with | | | | absorbent | | Propellant drum return | DOT-4BW | Non-hazardous | | | | | | B. Facility Decommissioning: | | | | 1. Hazard Reduction | | Not required | | Liquid waste handling and disposal | See descriptions on | Flush with water
(wastewater treated
as non-toxic waste) | | 3. Dismantling and demolition | pages 71-73 | Flush with water
(wastewater treated
as non-toxic waste) | | 4. Site restoration | | Not required | | - Decontamination and
removal of equipment and
subsequent revegetation of
the grounds after demolition
debris and solid wastes are
removed | | Not required | | - Postclosure vegetation
maintenance | | Not required | #### MISSION OVERVIEW - Demonstration mission focused on formation flying and rendezvous technology in space environment - Swedish Space Corporation, Swedish National Space Board, OHB Sweden, German Aerospace Center (DLR), French National Space Center (CNES), and the Technical University of Denmark - Two spacecraft Mango and Tango - Mango has two monopropellant systems – a hydrazine baseline and a High Performance Green Propellant using LMP103 (ADN) #### TRANSPORTATION OF PROPELLANT - Prisma spacecraft and the HPGP propellant were flown by commercial aircraft from Sweden to the launch facility in Russia - Hydrazine could not be shipped via aircraft, so it was transported from Germany to St. Petersburg on a ship, and then transported by truck to the Russian launch facility - months in advance of the launch campaign. #### HANDLING AND OPERATIONS DURING LAUNCH CAMPAIGN - SCAPE suits not required - HPGP loading process took seven days with 2 specialists and 1 part-time technician - Hydrazine loading took 14 days with 5 mission specialists and more than 20 support specialists (more than 3 times the manpower) - Hydrazine waste 8 gal of hydrazine, 105 gal of contaminated deionized water, and 18 gal isopropyl alcohol. Hazardous waste procedures had to be followed. - HPGP waste ¼ gal of propellant and ¾ gal of isopropyl alcohol/de-ionized water (considered non-toxic). Disposal of these wastes was provided at no charge because of the non-toxic classification # PRISMA Launch Campaign Environmental Hazards Hydrazine HPGP | | Hydrazine | HPGP
LMP-103S | |-----------------|------------------------|-----------------------------| | PRISMA Campaign | 470 kg toxic waste | 3 kg <u>non-toxic</u> waste | | | 29 kg propellant waste | 1 kg propellant waste | #### **PRISMA HPGP to Hydrazine Cost Comparison** | PHASE E - S/C Propellant Loading | HPGP | HYDRAZINE | |---|-----------|-----------| | Management, I/F & Config Control | € 21,340 | | | Fueling Procedure | € 12,371 | | | Range Safety Documents | € 12,371 | | | Launch Site Visit, I/F & Range Safety Review | € 6,186 | | | Travel and Subsistence | € 1,546 | | | Crew Training and Cerification | € 7,423 | | | Mgmt & Engineering Subtotal (as above) | € 61,237 | € 144,289 | | GSE Referb & Prep | € 37,113 | € 46,000 | | Launch Site Activities | € 38,435 | € 139,754 | | Propellant and Propellant Shipping Cost | € 21,031 | € 130,100 | | GSE and Consumables Transport | € 9,996 | € 19,992 | | Propellant Disposal and Propellant Drum Return | €0 | € 29,282 | | Grand Total (Euros) | € 167,813 | € 509,417 | | Grand Total (US Dollars) 0.78 EUR/USD (Launch Campaign in July 2010) | \$215,144 | \$653,099 | Savings as compared to Hydrazine: \$437,955 (over 2/3 cost reduction) ### Summary of Observations - Biggest environmental cost drivers over the life cycle of the propellant are facility operations and maintenance, transportation, and end of life disposal - Costs associated with health and human safety protection while operating with hazardous materials are major cost drivers for propellant selection - When environmental costs are included in the analysis, one can potentially bridge the gap between traditional investment and return on investment models in a timeframe that can be acceptable to investment decision-makers - This research adds significant data to the full picture needed to complete the business case for green propulsion, however additional work is needed 10th Annual Workshop on Environment and Alternative Energy Christyl C. Johnson GSFC Deputy Director for Science and Technology Dennis J. Andrucyk Director, Applied Engineering and Technology